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UNDERSTANDING OF PION-NUCLEUSSCATTERING

?fikkel B. Johnson ●

Alemos National kboratory
~~MO@, New *XiCO 87545

ABSTRACT

A development of the theory of plon-nucleus scat-
tering ia given in ● field theoretical framework.
The theory im designed to describe pion ●laatic
scattering and single- ●nd double-charge exchange
to Iaobarlc ●nalog states. An ●nalyaio of recent
data ●t low ●nd resonance ●nergies ie made.
Strong modlficationm to the simple picture of the
scattering ●s 8 ●ucceation of free pion-nucleon
lnterectiona are required in order to understand
the data. The ●xtent to which the ●xperiment Is
understood in terms of microscopic theory is
indicated.

The basic problem in the theory of hedron-nucleus scattering ●s
viewed in nuclear physics is to ●rri-+e ●t ● formulation which
●ddresoee the fundamental issues, which permits quantitative answers
to certain practical questions, ●nd which 1s readily solvable. me
last requirement makes the task very difficult, In the specific cme
of pion physics at modlum ●nergies, nuclear physics is challenged to
go beyond the traditional framework ●nd to ●olve the many-body problem
of ● quantum field interacting with ● collection of nucleon sourcm.
The flnel result ●ust describe the interplay ●mong the nuclear, pio~!,
tind A33 dynamics. The coupling ●mong these sectors of the problem can
become fairly intricate, but the theory ●ust seriously ●ddress ●ll
three if it im to be ●ble to separate the fundamental iosues from
uncmtainties hi nuclear structure, which one would like to probe ●s ●

practical ●pplication. For ●xample, the pion ha. ● special sensitivi-
ty to neutron densitieco ●nd one hopes that this sensitivity can be
exploited to study separat~ly ●nd in detail the neutron component of
ground ●nd ●xcitad nuclaar states.

In these lectures I will discuss ● theory of tilastic scattering
●nd single- and double-charge ●xchanse to isobaric ●nalog otates which
●ddrasses Lhesa iesues. The lectures will ●mphasize the pedagogical
dovelopwent and will utilixe the-dependent perturbation method. to
find ● witable theory of the bptical potential based OR ● field
theoretical description. In ordtr to brin8 to8ether ●lastic, ●insle-
and double-charga axchanaeo iooopin invariance will be incorporated ●t
a basic level of the theory. Interpretation of recent LANP? data in

this theoretical framework will be made.
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1. Basic Theory

Traditional multiple
~heorie~l] are

scattering . not
justiried for describing pion-nucleus scattering. These theories

well
as-

sume that the dynamics can be adequately desc;ibed by potentials and
that the number of projectile particles is conserved. Thie ia ,clearly
not the case in pion-nucleus scattering, because pion number may in-
crease or decrease by one unit at any time: during intermediate the
intervals any number of piona may be present. Thus, one would like to
build up the final result in terms of the absorption ●nd emission ●m-
piitudes of a meson from a nucleon (and its first excited state, A ),
with one objective being to learn new details 11of how this coup ng
occurs.

In order to be able to describe scattering of a projectile under
these circumstances one must use more powerful techniques.
priate tool from many-body theory la the Green’s :::;::87

Ga.a(t’ - t), which gives the amplitude to remove s pion in Btate a’
from the ground state of the system at time t’ when it is inserted at
time t in state a. The formal definition of this Green’e function is

Ga,a(t’ - t) s (1)1-1<01 T[aa,(t’)a~(t)]lO>

where 10> is the interacting ground state” ax(t) is the pion creation
operator in the Heisenberg rapreeentation and T is the time-ordering
operator, The advanta~e of the Green’s function is that it lends it-
self to diagrammatic ●nalysia, wnlch means that the “bookkeeping” for
its numerical evaluation ic ●specially simple. The Green’@ function
●pplies to the case of multiple scattering in both potectial theory
and field theory.

I would like to give now ●n intuitive derivation of the equation
of motion for the ~ion wave function Y(x,t). The derivation is based
on the existence of the Green’# function but does not require ●

specific dynamical model. I wish to make the following aeeumptione:

(a) we know the pier wave function for large negative times
t-t

o
+-a;

l(~*~-Eto)
*O(Z) - +(x,to) - e ●

(b) we know the ●mplitude S\x’,x) for propagation of the pion
from x - (x,t) to x’ without excitin~ the medium;

(c) we know the ●mplitude F(x’,x) fo? the propagation of the
excited medium.



The amplitude *(x’) is related to
perposltion, i.e., *(x’) is obtained
interfering histories for the evolution

.

+O(X) by the principle of su-
from YO(X) by summing over all
of the system,

$(X’) -@xo~A #t’; ~o@J@fo) , (3)
i

wh~re the AI describe a history in which the pion interacts with the
system i times through F (see Fig. 1]. Becau~e we know the amplitudes
for propagation of the pion without
propagation of the excited medium, we

AO = S(X’,X) ,

J

●xciting the medium and for
have

(4)

Al = ~~ d4x~d4xl S(X’,X~) F(x~,xl) s(x~,xo) , and

A2 - j... ~ d4xi .d4x2 S(x’,xi) F(x~,x~) S(Xl,Xj)

F(x;,x2) S(X2,XO) .

If we call the sum of all these amplitudes G , (t’ -
Xlxo to),

G
i

x~,x$t’ -to)- Ai(x’,xo) ,
-. -

(5)

(6)

(7)

which is appropriate by definition of the Green’s function, thm it is
possible to evaluate G by solving the integral equation,

d

p.
F

\ x’
t’

f

d

,’\’\
\

9

F
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Fig. 1. Illustrating alternative histories ~ by which the pion
(dashed line) nay propagate frum tO to t. Alternative ●mplitudes ●re
rummed coherently to get the complete amplitude for finding the meson
at (IJ’,t’).



x ,qp’G, - t~) = S(x’,xo)

+ // d4x~d4xlS(x’,x~)F(x~>xl)G , x (tl - to) ●

?s1’-0
(8)

That Eq. (8) is equivalent to the sum of Ai is most easily seen by
repeatedly ~L16er~ing the left-hand side of Eq. (8) into the right-hand
Bide.

Now , to find the equation of motion for ~(x,t) we make use of
the fact that the wave equation for a free pion is the Klein-Gordon
equation, so that

(A - V2 + ~2)s(x’,x) E (0+ U2)S(X’,X) - -i6(~’ - ~)6{c” - t) ● (9)
~~2

Applying 0+ U* to Eq. (8) and using Eqs. (3), (7), and (9) we find

[o+J- i / d4x1 F(x’,xI)] $(xl,tl) = O for t’ > to = -= . (lo)

Equatiou (10) is tb: d~:aired result. By taking the Fourier
transform we find that the wave functioa Vu(x) for a pion of ?nergy u
satisfieg the familiar Klein-Gordon scattering equation

[-V2+U2+/ d3x’<xlU(u)l~’>] ~,u(.’)=U2~u(x) , (11)

where the optical potential

wQ.l&Pion-exe%

U is just the Fourier transform of the am-—— ———
medium,—-

Q’IU(LAI)IYJ>z -i d(t’ - t)eiw(t’-t)F(~’t’; IJt) ● (12)

We have used the result that F can depend only on the time difference
t’ - t due to invariance under time translation. The ●lastic-scatter-
ing amplitude is obtained from $ In the usual way. Understanding the
meaning of $(x,t) in terms of the pictures in Fig. 1 1s uaefvl.for
determining how to use $(xtt) in the calculation of other observable
such ae inelantic scattering,

One easily seeb by referring to Fig. 1 that the theory which we
have constructed does not prernervethe number of pions across ● given
time Interval. Thus, phytics embodied in Eq. (11) goes beyond that of
traditional multiple-scattering potential theories. Examples of
formulations which begin with potentials .●nd use one of the
traditional multiple-scattering theorie~ ●re given in Ref. 3. The



equation of motion in these theories is often the relativistic
Schroedinger equation. The isobar-hole model of Ref. 4 makes use of a
generalization of Schroedinger dynamics to treat the coupling between
the pion and Isobar-hole excitations. Not only Is the physical basis
of the relativistic Schroedinger equation different from that of the
Klein-Gor on equa~ion, but An practice they can lead to different
rewlts.sf

The main problem is now to find a theory of the amplitude
F(x’,x) for the propagation of the excited medium. We must introduce
a dynamical model for this purpose. In this lecture I want to Dick a
simple model for the meson-nucleon coupling and for the nucl:a.
dynamics, but I want to insist that the model address :he new aspect,
that pions are emitted and absorbed as single quanta. In ~larticular,
I want to treat the nucleons of the nucleus as fixed sources of the
meson field. The titatictheory is believed to approximately describe
a theory including nucleon recoil under suitable conditions,61 and
therefore, t’..?static theory can be useful for making estimates. The
extent to which these conditions are satisfied is an important issue
in practice, so that the static assumption will have to be relaxed
later to make quantitative comparisons to experimental data. The main
point is that the extension to include nucleon r~coil is not one of a
conceptual nature and that the structure of the theory is almost
unchanged. The extension does add much aggravation to the practical
implementation, ilowevero

With these caveats clearly in mind, I will now describe a
Hamiltonian H which has many of the desired properties. We shall take
H ●.o have the three pieces,

‘“HOB+HOM+H’ ●

The barycm sector is described by

HoB=~ b~bj(mi6ij+uij) ~

ij

(13)

(14)

where b~ is a creation operator for a nucleon or a A33 of mass ml at
position ~i. We envision the b33 as an independent degree of freedom
as It woulrj be in the o,uarkmodel. We have included a counter term

‘i
J
which may be used for purpoues of renormalization. The meson

oe tor is dencribed similarly by

(15)

where ‘k :
(k2 + m 2)1/2 and ●t creates M me~on of quantum numbers

1!\lk, !which will stand or momentum, Isospin,.... In these lectures,



we will allow
these degrees

H’-~

the meson to be a plon or a
of freedom is spec~fied by

[anb~bi Vji(k) +H.c.] ,

.
p meson. The coupling ainong

(16)
ijn -

where the interactions Vji(k) may be described diagrammatically as in
Fig. 2. Specific expressions for n and p couplings to nucleons are

~ . k T . a vn~(k) and (17)V* “ (fnhN/m~). - - .m

•uXIcc~~vp~(k)) (18)v* = (fpN@lp) E .
P

where u and ? are pauli matrices in spin and isospin space, a is a
ve~tor- repr~senting the isospin q~”antumnumber of the meson, ~ is the
polarization vector of the mcsou and the v(k) are form factor;. The
standard value

‘0rl:!3&7i
s 0.08, and Zhe p-meson coupling will be

taken as the “strong

(19)

Similarly, the n and p coupling to the ieobar A33 are

VAA = (fnAA/m=) ~ ● ~ O
?l “ !ivI:AA(k) and (20)

.lx~~*gvpAA(k) $ (21)@’A = (fPAA/mp) ~ -
P

where Z and O are the A33 spin and isospin operators~

Z21A33> =% IA33> ,

}. >Mw
(a) (b) (c)

Fig. 2. Examples of meson-baryon co plings employed in these lectures.
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and similarly for isospin. The value for the coupling of the pion to
the A33 an be related to fn~ by SU(2) x sU(2) quark model ar-
guments8f which give

(22)

Similarly, the coupling of the p meson to th. L leads to the relation-
ship

f~AA/fpm = fTAA/fnm ●

Finally, transitions between nucleons and A33 may be described by

where SU(2) x SU(2) symmetry again relate the pion coupling to that of
nucleons

(26)‘~NA/f~NN = 72/25 and

fpNA/fnNN = %NA/f*NN “ (27)

In Eqs. (24) and (25) S and T re transition spin and isospin opera-
tors, -97respectively, def~ned by

where the unit vector &*(mk) is defined through the relation

(28)

(:.9)

A &imilar definition holds for the transition isospin operator. The
vectors ~ i~~ Eqs. (17) th$ough (25) have the same representation as
d(mk) of Eq. (29), I.e.j a n is represented by &(m - +1) : &n+. The
~ and ~ operators are related to projection operators, e.g.,

~e~T*&6aB-&”~~*~ (30)



I t

.

projects onto total iaospin 3/2 of the pion-nucleon system, and simi-
larly

(31)

projects onto total angular momentum 3/2 .

(’meof the exciting possibilities of pion-nucle s scattering is
Ttha~ models of baryon structure in quark models10-12 might be tested

through a sufficiently careful implementation of the theory. Under-
standing of the one-pion exchange potential and meson exchange
currents in nuclear physics h s led to constraints on the size of the
quark bag of the nucleon.ll~ One might hope that sAmilar statements
about the size of the A

??
bag [and other details of H’ of Eq. (16)]

might arise from app cations of pion-scattering theory, because of
the strong coupling between the pion and the A33.

For example, in the bag model as applied to baryons, the three
quarks fill a region of space of radius R, which is in turn determined
by minimizing an energy functional, whose main contributions arise
from (1) quark kinetic energy, which varies as l/R, and (2) the bag
energy which varies as R3 and is interpreted physically as the source

::unYYsure
responsible for confinement. In the Stony Brook ver-

of the bag model there is an additional attractive term due to
the piOll coupling to the bag surface. The radius of the bag is
usually taken to be the classical value, which is the location of the
minimum of the energy functional. The general shape of the energy
functional for the Stony Brook bag is shown in Fig. 3, &nd the minimum
occurs for the nucleon at a radius of approxi-mately0.3 fm.

The couplinc of the pion to the nucleon is determined by the
principle of the conservation of axial vector current: iuside the bag
this current is carried by the quarks, and outside it is carried by
the pio~ field. In order that the current be conserved, these two
contributions must be continuous across the bag surface. In this
fashion, one determines the pion-nucleon coupling constant as well as
the dependence of the coupling on the pion momentllm~, which specifies
the form fa tor. For a bag of fixed radius R the form factor turns
out to be125

3j1(W
v(k) =

~ *

where jl(kR) is a spherical Bessel function.

(32)

In a number of ways these bag models are too simple for the pur-
poses of plan-nucleus physics. For one thing, the nucleon and A.
have different aizetiin bag models. Since there is no overlap of t~~
surfaces, and since the pion couples only at the surface, these
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energy functional for a nucleon in the Stony Brook “lit-

nodels, strictly interpreted, do not allow transitions between
nucleons and A3,! For another thing the sharp surface of the bag

iintroduces spur ous high-momentum components in the form factor, which
are undesirable due to the fact that pion couplings tend to emphasize
high momenta.

As solutions to the theory become more sophisticated, these dif-
ficulties will disappear. I would now like LO briefly describe one

that this would occur.131 An obvious odssion from the theory asway
described is quantum fluctuations of the surface around the classical
radiug. These fluctuations can be estimated under the assumption that
the quarks move much more rapidly than the surface. In this case, the
energy functional In Fig. 3 would play the role of the potential
energy in a Schroedinger equation for the wave function Y(R) of the
nuclear surface [l~(R)12 gives the probability that the bag surface is
located at R],

-~2
[— + U(R)]$(R) = E$(R) ,
2M*

(33)

which could be solved provided M*, the effective mass of the surface
zero-point motion, is known. In Ref. 13 this effective mass was
estimated to be

M* x 0.5 M (34)
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under the assumption that only the quarks contribute to the
vibrational energy and zhat the vibrational motion is homologous.

One of the consequences of this model is that :Le root mean
square (rms) radius of the bag surface increases from 0.3 fm to about
0.7 fm. Estimates of the effect of a relativistic treatment of the
surface141 give a smaller rnnsradius of about 0.5 fm. One cxmclude~
from the relativistic model of surface zero-point motion that the fo.,~
factor can be described by a cutoff mass A such that

v(k) = 1

k2/A2 + 1
(35)

with A = 1.4 GeV/c for the TNN coupling and A = 1.1 GeV/c for the nNL
coupling. Val es this large are consistent with dispersion theory
calculations.15’f Phenomenclogical treatments of pion scattering in
field

‘h~$;?t~ca~esfr~a~~;;sva:~~ ::es;~:~yc”;~;:; ctofth:65fa~:980 MeV/c.
that nucleon recoil, which is normally omitted in the theoretical
calculations, introduces additional cutoff factors. Recoil effects
can be estimated by looking at the momentum dependence of the nucleon
spfnors and relativistic phase space. We estimate that an “intrinsic”
cutoff of A - 1.4 GeV/c gets reduced by the recoil to A - 1.03 GeV/c,
which is not so different from the larger phenomenological value.

The situation discussed here contrasts sharply with the more
traditional ways of describing pion-nucleon scattering in terms of
potentials. In these theories the cutoffs are much
A

smaller,
z 200 MeV/c.17] The reason for this is a combination of effects,

the most severe of which Is an intrinsic confusion of p~teatial models
between the energy dependence of he nucleon pole and the momentum de-

16’18! Since the geometrical size ofpendence of the form factor. the
nucleus as well as higher order terms of the optical potential are
influenced by the range of the form factor, it is important at a quan-
titative level to go back to fundamental principles and descrtbe the
scattering in terms of the pim-nucleon couplings of Fig. 2, a~ we are
doing.

Having chosen and discussed in detail a model for the underlying
dynamics, let us now consider how to build up pion-nucleus scattering
from it. Recall that we have chosen to assume that the nucleons are

‘ixed at positions :l,***,:A as the pion multiply scatters through the
nucleus. Finally, of co~r~e, it is necessary to average the nucleon
positions over the wave function of the nucleus in order to calculate
a cross section.

We will describe the Green’s function for this model.6, The

rules of time-dependent perturbation theory for the calculation of G
will not be derived. The syecific form in which I state the rules may
not be known to everybody, but the ideas for constructing titne-
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dependent amplitud

quantum mechanic~~~ ‘hould be

familiar from previous course work in

We begin by deacrib?.ngthe way to calculate the Green’s function
Ga,a(t’ - t; ~18:20°0@A) for the pion, assuming that the nucleon
cource~ arc at fixed positions ~l,...,~A. Examples of diagrams for

~?k(t’ - t; ~,.,.~A) (36)
.-

are given in. Fig. 4. The amplitude G is evaluated by summing all
allowed diagrams, each of which i~ ~eswf~ted with s nlmarienl------ .“-- !?*111L4

by definite rules to be described below.
,--”-

The allowed diagrams con~ist
of A nucleon lines labeled by the spatial coordinates of the nuc.leons.
Tb.ese lines are directed by an arrow which points up%ard (the
direction of lncrca~lng time). The diagramfi eacl-i have two labeled

L ~nes t’. and t at which a directed Dion line o’ quantum number6 k’
.emlnates and a pion line ~f quantum numbers k originates, respect-
ively. These pion lines may connect to ‘nucleons, as shown in
Fig. 4(b) or may connect the times t’ and t, as shown in J?ig, 4(a).

I

I
I

‘3

(0)

I
‘1I

II I
‘1 ‘t ‘8

lb)

,,.

‘m

I
‘t

Fig. 4. Examples ot diagrams contributing to the Green’s function in
Eq. (36). The labels for parts of the diagram are occasionally omi:-
ted to simplify the figure.



Otherwise, there may be any number of directed pion lines couzecting
the nucleon lines; pions may propagate either forward or backward in
time. Each vertex at which a pioD connects to a nucleon is assigned a
distinct time label. Intermediate pion lines are labeled by quantum
munbers ~“, and nucleon line segments are labeled by i to distinguish
between nucleons and A33 and to specify the spin and isospin quantum
numbers.

Numerical values are associated with the diagrams as folluws:
(1) Each vertex at which a pion attaches to a nucleon is assigned a
value given as a matrix element of the operators in Eqs. (17), (18),
(20), (2i), (24), and (25) . (2) Meson line segments
are assigned the value

e-iukAt

—.. —
2%

@(At)

and mesor lines pointing downward

e-iuk(-At)

2w~
@(-At) ,

where At is counted in the di=ect.ionof the arrow.
nucleon line segments are assigned a value

@(At)e-i<C>At ,

pointing upwatd

(37)

(38)

(3) T.ntermediate

(39)

where <c> is ,.Raverag~ ●xcitation en~rgy19] and Intermediate A33

~(At)e
-iMAAt

● (40)

(4) Sum over all intermediate labels. This sum includes the discrete
quantum number: of the pions, nucleons, ●nd A33 as well am the
intermediate p~ momenta

J d3k——
(2n)3

and the intermediate times

(41)

Two uueful id~ntitiee are



.

(42)
e-i~(t’-t)e(t, ‘ndw e-iu(t’-’) and-t)=i~xu

-Uki-irl

eiu)k(t’ - t) *-iuk(t-t ‘)

2%
e(t’ - t) +

2uk
e(t - t’)

- & ~“cb *;-2. . (43)
Lll a U’ . ~f

We have not said much about the term u ,1
uhould not forget ito include it in evaluat ng
needed because ~any of the interactions in higher
effect of changi[,gthe nucleon and delta energies

+ in

in Eq. (14). One
the diagrams. It is
order will have the
away from the values

<c> and ❑A, which we have as6umed them to have. Thus Ui,i should be
thought of as having whatever value is neceh~ary to maintain thege
single-particle euergies. It is analogous to the single-particle
potential in low energy nuclear physics, which is usually added arid
subtracted from the many-body Hamiltonian before doing perturbation
theory. The “added” piece establishes a set of basis states and the
“subtracted” piece then cancels some important higher order terms and
enables one to avoid double counting with the tuesons in the nuclear
force. The term u ,

H
here plays the role of the “subtracted” piece in

conventional many- o y physics.

By evaluating the diagrams in Fig. 4 according to the rules just
described< .he amplii~tdefar a pion to scat?er from m collection Df
sources fixed at :l,. ..,rA may be evaiuated. TO makp the theory
relevant to nuclei, we must-take account of the fact that the nucleon
positions are dls~ributed throughout space as described by the nuclear
wave function, *N* The simplest reulistic ckoice for $N would be a
Slater determinant of singie-particle

RM&:wtt75

~rtree-Fock28~~ \ja~~d$i${~~

are available from aemimicrosc~pic
models of the nucleon-nucleus interaction. For

closed shell nuclei, the appropriate wave function Jay be written

(44)

where is the antisymmet:ization operator, A more rea,iistic choice
would include a modification of Eq. (44) by two-body correlations

‘epyesenteJ by ‘(ri$

‘~l,***,~li’).J) - n f(rij)~$k(rh) ●

i<j
(45)



ArIexplicit expression for f(r ) and ~k(rk) might be obtained from a
variational calculation applie~jto a ~~n~te mdeue.

In order to incorporate the nuclear wave functione one may crm-
tinue to uee diagrammatic analysis. We consider here only the wave
function in Eq. (44). The matrix element we want is

(46)

This expectation value is n straightforward modification to Fig. 4.
Each initial and final nucleon line ia labeled by one of the quantum
numbers of the occupied orbitals, so that each diagram is multiplied
by the product

(47)

It is also neceesary to determine the sign of the diagram, which has
Its origin in the Pauli principle through the antisymmetrization oper-
ator in Eq. (44). Because the wave function must change sign upon
Interchange of the state labels of any two particles, the sign of t5e
diagram is

(+NX , (48)

where Nx is the number uf interchanges af initial- and final-state
labels needed to bring the ori’srof labels to ● Btandard #equence.

It remains now to identify the optical potential U. We saw in
ttie discussion of Fig. 1 that U is identified as the ●mplitude for the
propagation of the excited medium. Therefore, to determine U we must
isolate this ●mplitude from our diagrama. We show in Fig. 5(a) one of
the terms contributing to Eq. (46) with it~ state labels given explic-
itly. To identify U we want to make this picture resemble one of the
historle$ in Fig. 1. In order to do this, we will eliminate the
auperfluoue nucleon ldnes and the unlinked terms, i.e., piecen that
correspond to a spontaneous medium excitation uncorrelated with the
initi~l and final plon [e.g., the excitation connecting lines D ●nd E
In Fig. S(a)]. The procedure that ●ccomplishe~ this chnnfe of
appearance 12 simply: connect th~ initial and final nucleon linss
having the same state labela. his doc~ not change the value of the
diagram, but it immedi.atel.ysimplifies the pictures because the
noninterazting lines [e.g., line F in Fig. 5(a)] do not have to be
drawn. The change of notation also aimpllfiec ke~ping track of the
Pauli principle. The ai.gnrule in Eq. (48) becomes
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Fig. 5. Two equivalent notations for a term resulting from averaging
the diagrmm in Fig. 4(b) over a product wave function for the
nucleons.

(+(H) ? (49)

where Z(R + c) is the sum of all the clotiednucleon loops and labeled
“hole” lines. The validity of the rule in Eq. (49) mny be verified
after a bit of thought. The ditigramin Fig. 5(a) :s redrawn in the
new notation in Fig, 5(b).

One should Iloticea very useful consequence of the sign rule in
Eq. (49). When evaluating diagrams in the ncw notatio!lit is permis-
sible to sum the hole lings over all normally occupi~d state labels
without restriction. The reaa~~ one does not have to worry ●bout
overcounting is that the sign rule ●seuree that terms violating the
Pauli principle will cancel in pairs, A further con~equence is that
the unlinked terms such as the vacuum fluctuation in Fig. 5 may be
regarded me occurring ●quivalently ●long with all linked diagrams
(i.e., ●ll terms linked to the times t’ ●nd t). They are therefore a
common factor (they can be ●hewn to be ● pure phaae) ●nd may be
ignored, However, once they are omitted, those that rewin may
contain legitimate piecee that appear to violate the Pauli principle.

We have now finiohed the tl~rivationof our expanoion, and it may
be compared term by term with any of the historie~ in Fig. 1 to
ieolate the ●mplitude U for propagation of the pion-excited medium. A
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few of the terms that contribute to ~’lUlk> are shown in Fig. 6.
When the arrow on the final momentum ~’ leaves the diagram as in
Fig. 6(a), we shall call the diagram uncrossed. A given uncrossed
term “n” will be denoted by

uncrossed = ~’lBn(t’ - t)l~> . (50)

All temei also occur iYIthe form of crossed pieces ●s in Fig. 6(b).
The expressions for the croesed piece corresponding to “n” ●re easily
obtained from the uncrossed by our rules for evaluating diagrams,

crccsed = <-~lBn(t - t’)1-~’> ,

so that in general F(~’,lc;t’ - t) is giveu

F(\’,~; t’ - t) - ~[~’@n(t’ - t)l~> + <-~
n

(51)

by

Bn(t - t’)1-~’>] ● (52)

From Eq. (12) we find

(a)

‘., t’‘o ok,’* ,*’h’
,!

..”
h (b)

Fig. 6. Teme which contribute to the ●mplitude for propagation of
the pion-excited medi,lm. The dashed lines repre.ent the initial *nd
final pion state ●nd do not contribute propagator factors to the value
of the diagram. (a) Thaae are uncroeoed contribution. (b) Each
uncrossed te~m hao an associated crossed term which muot be included.
No @ttempt hat been made to give ●n exhaustive limt.



Note that

.

u(u)l~> =:[~’IBn(u)l~> +<-\lBn(*) I+ . (53)

our optical potential U 18 craosing symmetric, i.e.,

~’lu(u)lp = <-~lu!ld)

This symmetry property arise8

-~’> ● (54)

naturally in the theory and Is eaaily

FitZFEZ~l-85feEhZpG~t~EyiZ 2tabH2tiii Ii~”r2{0mifOtK
eolution of integral equations. The simplicity of U as evidenced in
part by this symmetry property is lost when one formulates the theory
in terms of time-ordered diagrams, but as shown in Ref. 2, this
symmetry could be recovered by complicated diagrammatic reaumnmtions.

Equation (53) is our main theoretical result. Expressions for
optical potentials have also been obtained for field theoretical
models by ether investigators (see, for example, Ref. 24).

in the remainder of my lectures, I want to present a systematic
application of the theory to experiment. The idea is to learn as much
as possible about the fundamental couplings and nuclear dynamics. In
order to enhance the possibility for doing this, we shall find it
desirable to extend the theory to describe charge exchange, exploiting
the isospln symmetry of the underlying interactions. We shall make
this extension in the next lecture.

II. Applications

Now I would like to describe applicatlous of the basic theory.
The first ●pplication is elastic scattering and the second is c~.arge
exchange to Isobaric analog ●tatee.

Let me first summarize the main results of the first lecture. I
showed there how to derive the optical potential U for elastic pion-
r~ucleusscattering from an underlying field theoretical model, Some
of the tmportant properties of this theory are:

(1) U is given through a well-defined cluster erpancion. In
order to evaluate U one must know the nuclear single-particle
orbitals and the values of the meson absorption and emission am-
plitudes given in Fig. 1.

(2) U must be embedded in the Klein-Gordon equation

(-V2+%2 +U)$l -0)2$ . (55)
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(2) U and the scattering T matrix are crossing-symmetric in
~rinciple; this property is preserved order by order in our
cluster expansion.

(4)
the

(5)
A=

The

Multipion intermediate states are intrinsically built into
theory.

Short-range pion-nucleon form factors (of a range parameter
1 GeV) are proper to use.

derivation of our rttsultsrelied on the static approxha-
tion. This 10 an unnecessary restriction and must be relaxed in order
to compare the results to experiment. The properties listed above
will survive the extension of the theory. In fact, the extended
theory may be cast into a form very similar to that given in
Lecture I, but the rules f~}r evaluating the diagrams are somewhat
altered. We shall n:xt make some heuristic modifications to take
account of the recoil and binding of the nucleons, but we will not
discuss systematically the requ:tredextensions. A complete discussion
of this is given in Ref. 25.

Let us begin by examining the first-order optical potential,
~(l). This is represented diagracxmaticallyin Fig. 7. The boxes are
the pion-nucleon scattering amplitude. We assume that ~he many terns
in the theory ccmtributlng to these boxes have been summetj and that
the result is known. This amplitude has not been obtained from the
theory in a completely satisfactory

1?1
nner, but there are

of it irI & purely Chew-Low model
derivati?~~

and in the cloudy-bag model,
which give stmilar extensions of the amplitude off shell. One of the

dJDA‘)4DAJ
(a)

1=N+’331‘
(b)

FW 7. Lowest order optical potential. (a) The general form for
u 1(,terms of the pion-nucleo.~scattering amplitude. (b) Prominent
terms occurring in the t = 1 partial wave of the pion-nucleon system,
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very interesting urmesolved261 questions is to what extent the
resonance in the (3~3) chanuel is Chew-Low (multiple emission and ab-
sorption of the pion) and to what extent elementary A .

N
In the

absence of a definite answer to these questions, we take gu ante from
Ref. 16, which expresses the off-shell pion-nucleon amplitude TTN in s
separable form,

(56)

whe<~ K is the pion-nucleon relative momentum, Pa Is a projection op-
erator--ontothe partial-wave channels [see, for example, Eqs. (30) and
(31)], V(K) is the pion-nucleon form factor and A=(o) iS an energY-
dependent factor which can be related to the experimental phase shifts
in channel a. Figure 7(a) expresses how the amplftude in Eq. (56) lS
to be averaged over nuclear wave functions to obtain the optical
potential.

Before rec~rdlng the result of evaluating Fib. 7, I want to make
a few remarks on the inclusion of proper kinematics, i.e., the exten-
sion of the lowest order optical potential beyond the static
approximation. Consider nonrelativistic kinematics for simplicity and
write the pion-nucleon T matrix in an arbitrary frame of reference as

(57)

where k(~) is the pion (~ucleon; momentum and E the incident energy

~.m+.+k.+#, .
2m .

(58)

Translational invarl~nce tells us how to relate the matrix element in
Eq. (57) to a matrix element of Trm, the T matrix evaluated in the
pion-nucleon center-of-mass frame of reference. The result 1.19

E P2
cm -E”’~

(59)

(60)

with P the total momentum

(61)
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and K the relative momentum

mp
K=k.-
.- E-G ●

(62)

.

Xn practice, llf course, these corrections must be made
relativistically. by In(ludiug the nucleon momentum in Eq. (62) one
mixes s waves and p wavps; this ie ~enerally referred to as making an
“angle transform.” The energy correction in Eq. (60) is very impor-
tant near resonanct?$but a: iow energy where the w dependence in
Eq. (56) is weak, one often assumes that the struck nucleon was at
rest in evaluating this term.

A few of the i~portant second-order terms that must be included
in the theory were ehown in Fig. 6. The terms which have been most
extensively studies In plon acatteri~-g are Fig. 6(a3), which is a
manifestation of “true abf40rption”in elastic scattering; Fig. 6(a4),
which is the Pauli correlation; aad Fig. 6(a5) and (a6), which are,
respectively, corrections for short-racge correlations arising from
the p meson and the shcrt-ranEe repulsion In the nucleon-nucleon
interaction. The latter effect is included by introducing the bhOrt-
range correlation function f(r) in Eq. (45). A syutemattc cluster
expansion of U in terms of the wave function in Eq. (45) is possible,
in which case f(r) would build up the radiBl distribution function be-
tween nucleon pairs. l%is function is sketched in Fig. 8. The
vaniehin~ of this function for small r Is the effect of the repulsive
core in the nucleon-nucleon interaction. The correlations give rise

:;&;te&c;YWimes cal’ed ‘he
“Lorentz-Lorenz Ericson-Ericsot”’

Ihe evaluation of these terms is straightforward in
terms of the rules that we have given, ad we w?.11postpone discussion
OL this to Lecture 111.

Next I want to discun6 the comparison of the theory to low-
energy pion elastic ec~ttering. The rntandardtheory for hie is the
theory of fK. Stri~ker, H. McManus, and J. Carr (SMC),28 The theory
originated in the series of papers in Refs. 27-31. The form of the
theory fits very Direly into the framework given in Lecture 1. In
Ref. 28, U is given explicitly as

J- r’=—.——u-—-—I
0,5

Fig. 8. Pair dietributicn function for nucleona.
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U _ -4m[b(r) + B(r)] + 4nv . {L(r)[c(r) + C(r)]}~

P2-1- 1 V2c(r) +~-4T[+ V*C(r)] , (63)

where

b(r) = pl[60p(r) - emblAp(r)] ~

Go =bO- (3/2n) 1.4 (b~+b~)

c(r) - P-~[cop(r) - cnclAp(r)] ,

B(r) - p2BO~2(r) ,

L(r) = {1-(4v/3)A[c(r) +C(r)]}

Ap(r) = pn(r) - pp(r) ,

P1 =1+(1)/M,p~-l+lu/2M ,

(64)

P (65)

(66)

(67)

} (68)

(69)

(70)

and wheie cm is the plon charge. The coefficients bo, bl, Co, and Cl
describe the pion-nucleon scattering amplitude fmN.

where $is thepion and ~thenucleon isospinoperator~. Thecorrec-
tion to bO in Eq. (65) is the effect of the Pauli principle in s
waves. The quantities B(r) and C(r) are second-order effects
de~cribing the true absorption of piontiin s and p w~ves, respective-
ly. The quantity L(r) describes the LLEE effect; A is taken as an ad-
justable parameter and is interpreted in Refs. 32 and 33 as the
combined effect of the p meson and nuclear short- and long-range cor-
relations. The quantities PI and P2 are a measure of the importance
of nucleon recoil, and therefore the importance of the angle
transformation. If PI and p% are set equal to 1, then the static lim-
it re8ult6.

The importance of. t~le Si4C potential is that it gives a
systematic reproduction of low-energy elastic-scattering data for pion
kinetic energy Tfl$ 50 Mev, The same parameters describe the level
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shifts and widths of n- in atomic orbits. See Ref. 7 for a detailed
comparison of the parameters t: the theory. Suffice it to say here
that the experiment and theory re consistent in mo6t respects.
Perhaps the most significant feature of low-energy scattering is the
relative weakness of U. This cornea about in a rather intricate
fashion. Without second-order corrections, it pay6 for the pion wave
function to develop high-momentum components to enhance the attraction
in the p-wave piece of .b.e optical potential, which then becomes
anomalously strong at low energie60 The effect of the correlations is
to weaken the p-wave piece of the potential. so that at normal
denbities this anomalous behavior does not occur.3QJ AS a result, the
pion penetrates farther into the nucleu6 and is more strongly
influenced by the interesting high-density region. The data are not
understood even qualitatively without the second-order terms. The
sensitivity of the scattering to individual terms was calculated in
Ref. 31 and the results shown in Fig. 9. The tixperimentalpoints are
from Ref. 39 and are shown to establish a scale. The more recent fits
to the data are those given in Ref. 28.

Next let me consider pion scattering near the (3,3) resonance.
Here the physics is qualitatively different. For one thing, the pion-
nucle~m scattering amplitude is much stronger, me~ning that the ~ion
penetrates less deeply into the nucleus and that the cross sections
have a st-ong diffractive character. This has the consequence that
one can understand semiquantitatively a large variety of scattering
data in relatively simple terms. (Some of these simple xesult6 are
mentioned in Lecture III.) On the other hand, the rapid variation of
the amplitude with energy means that the detai16 of Che scattering are
sensitive to the way the nucleon and A33 energies are handled in the
evaluation of the optical potential.

Let us begin the discussion of the resonance energy by examining
more carefully the energy in the evaluation of lowest order potential.
Consider for simplicity the uncrossed term in Fig. 7(a). The rapid
energy variation occurs in g = 1 partial wave for the A33 contribution
to the amplitude [that the Aal resonance occurs in ~ = 1 is evident
from Eq. (31)]. In the static

1
’33 “ v W - mA + ir(~)/~

~fieorythe amplitude has the form

v, (72)

where V represents the nNA vertex and u is the incident ●nergy. In
going beyond the static theory one must be sure to include in u the
energy of the struck nucleon “A” in addition to the energy of the
incident pion

(73)

and similarly replace the mass of the A33 by its true energy
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Fig. 9. Demonstration
Eq. (63) for low-energy
solid curve represents the fdl calculation and the circles are the
experiment, ta’kcnfrom Ref. 39. The dashed lines are: (a), the
Xis81inger potential ouly; (b), the result of (a) plus the angle
transformation; (c), the result of (b) plus s-wave tme absorption;
(d), the res?lltof (c) plus the Pauli correction.

P2
‘A+HA”~+uA+ ‘A ‘ (74)
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where ‘A i8 the interaction potential energy of the A33 with the
nucleus and P the momentum of the A33. The A 3 kinetic energy is, of
course, ?the- same as the correction previous y discussed in Eq. (60).
One does not currently have a reliable theory of UA, but as a first
guess one might take it to be the same as the nucleon-nucleus
potential, an4 describe the presumably small corrections to this
perturbatively in the second-order optical potential.

A ~henomenology which addresses the modifications just discussed
is the isobar-hole model of Ref. 4. Although this model is based on
traditional multiple-scattering theory and is not solved in an opti-
cal-model framework, it is useful to examine the results to obtain an
orientation to scattering in the resonance region. Their model of HA
includes a correction AUA, which is added to Eq. (74)

AUd = pauli correction + spin orbit + WOP(r) , (75)

and which describes the energ, of
‘he ’33 relative to that of a

nucleon. The parameter WO and those characterizing the single-parti-
cle spin-orbit force are determined by adjustin~ them to obtain a best
fit to elastic-scattering data. The results they ob.ain for WO are
shown in Fig. 10. A positive ReWo Indicattisthat the isobar is less
strongly bound to the nucleus than a nucleon and the negative ImWo in-
dicates that the Isobar width is increased ~n the medium due to inter-
actions with other nucleons.

I 1 I 1 I t I 1 I J
100 150

Tw (MeV)

200 250

potential W. of Eq. (75).
come from an analysis of



1

Let us now estimate the importance of the energy sh~fta that
occur in the modifications of Eq. (72). The effect of the kinetic
energy operator was examined in Ref. 40. There it is shown that if
the V’s in Eq. (72) are neglected, then for s per~pheral partial wave
g, the kinetic energy ~perator may be replaced by the average given by

<P2> 4 62
2, 1/2

26(K:+$ )

X==T”Z==T+ZY-T=T+ 2(M+m)g — ‘
(76)

where k- 1s the incident pion momentum and where B is the rate of
fall-off”of the nuclear wave-f;mction in the nuclear surface

$(r) - e-$r/r .

If we ev%luate for the correction term for 160, taking t = \R,
3.5 im, and kn = 1.4 fro-l, corresponding to the resonauce energy,

<P2> k:

“~-~+25’2 ‘ev “

What about the potential energies? The average cr+?:~,s
bound nucleon in ’60 can be estimated from Hartree-Fock

.1.
th??(.)(-~;”

find from Ref. 41 that

Z(2R + l)En
<EA> = “ N -22 MeV .

E(2R + 1)

On the other hand, we may estimate <UA> by noting that the scattering
takes place IN the nucleus in a region specified by the overlap of the
n~!cleardensity and the square of the pion wave function, so

/uA(r) lyw(r)12p(r)dT
<UA> = — .— (80)

,flYn12p(r)d~

We have evaluated this421 for 160 and find that <U > x -24 MeV for
re~onance-energy pione, The energy dependence of <u \ is

9
‘.,lownin

Fig. 11. S’tmming the contributions in Eq6. (78), ( 9), anti (80), we
find

Net energy shift = -23 MeV , (81)

This is a significant effect in the denominator of F,q.(72), given
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studies431 havethat ~/2 - 55 MeV. Phenomenological shown that
elastic-scattering data can be systematically reproduced throughout
the resonance region In terns of an optical potential similar to that
in Eq. (63), provided the lowest order optical potential is evaluated
at an energy shifted downward by 25-30 MeV, which is very clo~e to the
estimate in Eq. (f!l).

It is worth noting that the width in Eq. 7
i f)

is also mod?.fied
by binding energy and recoil considerations,4~ 4 and that in general
one must expect phenomenological energy shifts to be complex.

In order to test any given dynamic~l theory it is of courke nec-
essary to calculate the energy fihiftrather than treat it as a phenom-——
ecological parameter. This is especially true of theories which ad-
dress only elastic scattering, becauoe the djnamical effects that are
included in the second-order optical potential affect the theory in
much the sane way as the energy shiftt;arising from binding energy and
recoil correct’ ISO Progress is beini;made

i? t!}
lding a theory in

which thetiee! s are actually calculated, ~ but I will not fur-
ther discuss c ine of reeearch here.

Let me now discuss the extension of these ideas to include pion
charge ●xchange to isobaric analog states, exploiting the (approx~-

mate) isuapin symmetry of the B“.ronginteraction. If we define the
total isoopin operator,

(82)



where ~ is the pion I.sospinoperator and ~N is the nuclear isospin op-
erator,

A:N=L ~Ti,
2 i-l -

(83)

then the isospin invariance of the interaction is expressed by stating

[H,~] =0 . (84)

This is true, of course, only to the extent that we omit the Coulocb
force and other presumably small Isospin-breaking terms. If we assume
Eq. (84) to be true, then we may express the scattering amplitude F in
the space spanned by the isospin components of the nuclear ground
state and nuclear 8ingle- and double-isobaric analog states explicitly
and generally in terms of ~ as

noting thaL this operator mus~ also commute with ~,

(86)

Since we want to be able to calculate ~Ain an optical model theory, we
must c}oose U to have the same form as F in Eq. (85),

~E”o+ul i”zN+u2(*”2N)2 “ (87)

The term UO ~s refarred to as the Is?%calar, U1 as the isovector, and
112 as the isotenuor potential. Uae of an optical potential of this
form has been previously advocated in Ref8. 27 and 46. An alternative
~pproach to th

~7~k~~y of charge
exchange Is the distorted wave-impulse

approximation.

In physical terms, the extension of the theory to include
isobaric analog states ❑eans the followin~. For nuclei with 3 neutron
excess, we may repru~ent the ground state as in FIR. 12. In ●ingle-
charge-exchange scattering to the itiObAri(:Rnalog otate any one of the
N-Z excess neutrons can be conver~.ed to ● proton ITI the same
spqce-spin orbit. The renulting collective excitation IB the isobaric
analog transition. In double-charge exchange the same thing m~y
happen to two of the exceaa neutzonn. Mathematically these two ataten
are repre@enLed au, re~pectively



.

z N

Fig. 12. Representation of the ground state of a nucleus having a
neutron excess. The single (double) isobaric analog state is a
collective excitation in which one (two) neutron(s) at a time are
converted to protons with the same space-spin quantum numbers.

1A(1)> m T$,6l“s> / <gslTNT~lgs> and (88)

,A(2)> - (T:)218s> / <gslTN2(Tfi)218s>t (89)

where $ is the nuclear Isospin-raising operator. (Isospin-breaking
effects may be formally taken into account by replacing ‘N with the
“analog spin” operator W. See Rrf, 49.) Because the three proceaaea,
namely elastic 8cattering,

Bingle-charge exchange,

(90)

(91)

and double-charge exchange,

ln+~u> + lfi-A(2)> , (92)

arc intimately connected by the symmetry of Isospin invariance, we ex-
pect t. find & relatively mimple theoretical description which will



tell us directly about the laoepin dependence of the nuclear response
as represented by the optical potential.

We will now diacuseihow the results i~ Lecture I may be extended
to charge exchange, following Refs. 50 and 51. We will use the ideas
of the spectator expaneion of Ref. 52. The spectator expansion shows
how to systematically express the optical potential U in terms of the
T matrix for the scattering of a projectile from 1,2,...,N nucleons.
In Ref. 52 it was used to give U for elastic scattering, but we shall
extend it to
of elastic and

Begin by
n hole lines
plon of charge

calculate the opt:cal potential for the-combined theory

charge-exchange scattering.

defining A(n)(i) as the sum of all diagrams which have
and which contribute to the scattering amplitude of a
i. This.,q~anticy iS specified by the rules of

Lecture I. Also define <~~n~>l as the matrix element of the nth-order
optical-potential piece of Eq. (87) corresponding to the scattering of
a pion of charge 1 from the ground state. Thus, the brackets < >i
mean, for example,

<fi(n)>i~ <m+gslw%n+gs> ● (93)

The spectator expansiot,ssys simply

<fi(l)>i. A(l)(i) ,

<fi(2)>i- A(2)(i) - <;(%oo(l)>i ,

<:(3)>i . A(3)(i) - <:(2)Gofi(l)>i-<;(l)Go:O)>i

<o(l)Go:(l)Goo(~)>i ,

and so on. The serief.is defined so that the matrix element <F>~ of
Eq. (85) can be calculated by solving the equation

Lfi+ficoi (95)

with the requirement that <~(~)>i - A(n)(i). To obtain ~(n) in the
operator form of Eq. (87) from ~(n)>i of E 4) we use isospin in-

~~l(~q. (87) to obtainvariance. It is straight.forwardto invert

(94)

‘2 “ m-+=-n-)-‘<o>++‘C>-- 2<fi>0)‘



U1 -

U. .

where T Is

+ (Cii>o - <t>+) +TU2 ,

<C>o - TU2 ,

the ground-state nuclear

By using thi~i procedure we
which is similar in Ionn to that of

and

.

(96)

isospin.

are led to an optical-model theory
SMC, but which now contains ex-

plicit dependence on the i~oapin operators ~ I will now state
~~? ‘~~e theory employs athe overall form of ~

special form for U
~~)optical-model theory.

which was derived in Ref. SO and given below;
this result will be discussed in greater detail in Lecture III. The
optical model is

fi=v ● [~(r) +A~(r)]V -k2[~(r)+A~(r)]

‘;(p~- l)V2; -;(P2-1)V2A~ , (97)

wheKe t and ~
the form

and where At a:~d
have the form

Note thut the

represent the lowest order optical potential and have

“ ~N{l , (98)

.
Ar represent the second-order optical potential and

AC]! T)2.● IN +A~~(~ “ -N (99)

loweet order optical potential has no iootenaor term,
becau~e two nucleons must be struck in order to charge eychange twice;

We find
If)

convenie
{5

to express [ and At in terms of a
),

set of
parameters ‘i ●nd A respectively. For the lowest order
potential

(~ “ A$])p(rj and

~: ~(r)
(l=. A !

(100)

(101)
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where the i-parameters are related to the coefficients of the
pion-nucleon scattering amplitude of Eq. (71) by

(104)

(105)

The barred quantities refer to B waves and the unbarred to p waves.
The quantities pl and p2 are defined in Eq. 70. Aa we have indicated,
near resonance we expect LO have to calculate the amplitudes b and c
with a complex energy shifk. In second order we find

(106)

where the A(2) may be calculated from the cluster expansion of
Lectu-e I, as will be di9~yaaed further in Lecture 111. Several im-
portant results are that A( are expected to be etrongly energy
dependent and weakly dependent on N, Z, and A In the region of the
(3,3) resonance. When Coulomb mixing of the nuclear wave functions is
taken into account, quantity Ap(r) should be taken to be the

ihfvalence l)eutrondensity 9 instead of pn - pp.

Expcrlmental results for ela~tic, eingle-, and double-charge
exchnnge are being accumulated now very rapidly at the meson
factories. I shall describe next our preliminary attempt~ to under-
stand theoe renults in term of the theory just described.

The firMt low-energ in le-charge-exchange scattering data have
just been taken at LAMPF.347 ~he angular distribution is ehown in
Fig. 13, The parameter of Stricker, MCMAIIUS,and Carr huve been used



lo- —_&_&__Jo

8C,m(deg)

Fig. 13. Angular distribut
i?
n for pion single-charge exchange to the

isobaric analog state of N at L8 MeV. The figure is from Ref. 54.
The short-dashed curve is calculated without second-order terms. The
solid curve includes the isovector Lorentz-Lorenz term and the long-
dashed curve includes a small phenomenological adjustment of the
second-order isovector tr.rm.

for the isoscalar potential. Without any isospin-dependent second-
order term we obtain the short-dashed curve, The discrepancy in the
forward direction is striking. Including the isovector second-order
U(2) arising from the LLEE term gives the solid curve, which now lies
much closer to the data. The physics of this improvement is interest-
ing. At low energy thpre is a strong tendency for the repulsive
s-wave and attractive p-wave terms in the pion-nuclean interaction to
cancel jn charge-exchange scattering. This gives rise to a dip in the

forward direction of the fre~ pion-nucleon amplitude. For
pton-nucleus scattering, the interference is strongly modified by mul-
tiple scattering. It appears to be a coincidence that the correlation
effects again weaken the p waves (see discussion of low-energy elastic
scattering in this lecture) sufficiently to restore a large part of
the interference observed in free pion-nucleon scattering, With a
minor ●djustment of the isovector oecond-order term one could come
even closer to the data. The necessary adjustments in the isospin de-
pendence may of course be calculated microscopica?.lyfrom the theory
presented in Lecture 1.

.

bt me now move to a discussion of the combined theory of
elastic ●nd charge-exchange scattering in the resonance region. A
large body of data iB beginning to be acquired at these energie6,
which makes the confrontation of theory and ●xperiment particularly
exciting. I will show next some of our attemptc to fit the
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experimental data with the theory jU8t described, and in Lecture III I
will discuss the extent to which the theory and experiment are giving
a consistent picture. Tl)eresultsssl that I will show are preliminary
and may change quantitatively as the analysis procedure it3 made more -
internally conei8tent.

The fimt step in the analyais was designed to determine a
single energy shift which would describe elastic scattering for N-z

nuclei throughout the resonance ~~giorl. Fitting elastic-scattering
data for the nuclei 160, 28Si, and Ca we determined that

AE . 28.7 + 15~ Mev (107)

would do a reasonably good jcb of fitting the depths and positions of
the first minima for fitscattering at 165 and 180 MeV. The fits wer~

::;::: n;e::’io
at 180 MeV, and I show in Fig. 14 the re~iu~t for n
Ca at this energy compared to experiment.

10?

10’

10”

F!g. 14. n+ ●lastic
tains only lowest
28.7 + 151 14eV.

1

<’” 1 I T I 1

1
1 . . . ..-L.--J....1..l_L..._.l.-l...1...-J. A

5 21 27 33 39 45 51 57 63 69 75

8C,m(deg)

scattering from 40 Ca at 180 MeV. The theory co~-
order tcrum with an energy ●hift Of AE .
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Using the va-’l~~~~ Qf th~ ~
2
nergy shift in Eq. (107) we next varied

the parameters and Al to obtain a
{+!i

to the CJ(OO)cross sec-
tion for single-ch~rge exchange at 164 FieV. Without second-order

~~~~~1 ‘~e ~~~~~~ters of the best fit are
undexpstimates the data by aa much as a factor of

.

42) = (0.03- 2.151) fmJ and (108)

~\2) = (1.99 +9.78i) fm3 , (109)

and the results are shown in Fig. :5. Note that both the magnitude
and the N, Z, and A dependence drc very well reproduced. In ord r to
fit the magnitude a rucher large 5isovector coefficient A~2 is
required.

We next determined A~2), the coefficient of the second-order
Isotensor potential,

Y
sing the 5° measurements of double-charge

exchange at 164 MeV.58 The results of the fit are shown in Fig. 16.
Again we see a generq&$y acceptable reproduction of the data. The
best-fit parameter Ai’) is

~\2) = (0.08+ 7.04i) fm3 .

The value A[2) which we uoed was taken to be

I7LI

x

15N
i

13C
1[

EL-J 120~n

i

i

x 14C

I 10 100

A

(110)

Fig. 15. Zero-degree cross section for SCX at 165 MeV vs A. The
crossen are the results of the calculation described in the text,
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1
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A

Fig. 16. Five-degree cross section for DCX at 165 MeV vs A. The
crosses are the results of the calculation described in the text.

(111)A~2) = (1.5 + 21) fm3 ;

this quantity is a theoretically determined number, the or in of
which will be discussed in Lecturt III. A large value of A\?) is

required to give &he correct scale to the cross sections.

The optical potential is now completely determined empirically.
However, there exist angular distributions for double-charge exchange
which have beer difficult to understand

Iso(n+,m )

theoretically. The most
puzzling is - 18Ne (Ref. 59), whose first minimum lies at 22°,
in contrast to the gredictitinsof most theories, which give this mini-
mum to lie at 30-35 . Using the set of empirically determined param-
eters, we find the angular distribution shown in Fig. 17. We see that
the minimum occurs close

$Z
22° in accordance with the data. The an-

gular distribution for Mg has been calculated and also looks quite
For 14C the minimum occurs where the minimum ofsatisfactory. the

data appears, but the theory overshoot the second maximum by a factor
of four.

What is one to make of these results? At the present time it is
hnrd to draw quantitative conclusions because (1) some of tne data are
preliminary, (2) the elastic-scattering data at 164 MeV are not
reproduced as well as they could be by our energy shift, and (3) the
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Fig. 17. hgular distribution for 180(~+,~-)18Ne at 165 MeV.

theoretical value of A~2) will change as we refine the calculation. I
do not expect qualitative changes In the parameters, however, and in
the next lecture I will make a comparison to the theory with this in
mind. The fact that the trends of the data ~re so well reproduced by
tiletheory is, I believe, a strong indication that our basic assump-
tions of isospin Invariance and scaling of U with density are valid.

A topic of interest for resonance-ener~y scattering is applica-
tion of the eikonal method. It turns out that relatively simple ana-
lytic expressions for cross sections and their relationship to the op-
tical potential can be obtained by using this method. This approach
has been developed In Refs. 60 and 53. One of the re~ults established
there is that the analytic expressions are surprisingly accurate. I
do not have time to go into detail, but I would like to end this
lecture by pointing out several results which are eaqily derived using
this representation.

One result iu that the single- and double-charge-exchange cross
sections at zero degrees should be very &ensitive to the valence n -
tron densities. It is shown In Ref. 53 that in the absence of UV)

the sensitivity of the cross sections to N, Z, and A occurs
principally as

(112)



where

LJWX(OO) -
~Z (2T - 1]

T3

R is numerically equal

.
(&I(~))4 , (113)
p(it)

to the impact parameter at which the uiag-
nitude of the pion wave function is attenuated by a factor of .1/2 as
the pion passes through the nucleus. In practice this occurs at
approximately the 10% density point for resonance-energy pions, i.e.,
where

p (E)

m

= 0.1 . (114)

The trends of the experimental relative cross sections for SCX and DCX
(except 48Ca; see discussion in Lecture III) c~~~ely follow EQS. (112)
and (113) with the simple “scaling” densities,

N
‘n”~p and

z

‘P=xf’ “

(115)

(116)

The gross features of the cross sections are thus of a geometrical
character. However, the fluctuations of the data around the scaling
model are significant and depend sensitively on the details of the
nuclear wave functions491 in the way prescribed in Eqs. (112) and
(113). Onc concludes from this that fits to the data such as those in
Figs. 15 and 16 could not be obtained unless a reasonably good
description of nuclear wave functions was u~ed. We have used through-
out our analysis the den6itie6 of Ref. 20(a). The effect of the
second-order potential is mostly a renormalization of the theory in

;:;;;,~i?ures ‘n a ‘ay ‘hat ‘s ‘niform ‘“throughout‘he ‘eriodic

To summarize, we have l~lied on the expectation that the nuclear
structure is ❑uch better known than the reaction theory at the present
time to learn something about the latter aspect of the theory. We
hope that in the not-too-distant future we will be able to turn the
question around to use the newly obtained knowledge of the reaction
theory to le[irnnew details of nuclear structure.

111. Evaluation of Higher Order Optical Potential

In Lecture I, I derived a perturbation expansion for the optical
potential, U. One of the main worries about such an expansion is that
the higher order terms will be found to be large and that the ecries
will not converge. If the higher order terms are so large, we would
need in addition to the expansion for U a nontrivial principle for



deciding the order in which to evaluate the expansion. In this
lecture I will discuss several of the summation procedures which have
been utilized in the literature.

The most straightforward is the “hole-line expan ion,‘124)~hich

527 discussed inis in spirit much the same as the spectator expansion
Lecture II. The idea is simply to collect together all terms having
one hole line as the leading term in the optical potential. As I have
discussed, this sum wocld give the free pion-nucleon scattering ampli-
tude. The leadiag correction to this would be the sum of all terms
with two hole lines, etc. The rationale for this expansitinis that
succes~ely higher order corrections involve ‘uccesslvely highet
powers of the density, and one therefore relies m the hope that the
nucleus is of sufficiently low density that the expansion will con-
verge rapidly.

In the event that the uecond-order correction is large, a more
powerful method of summing Eq. (52) would be required. One such
method was proposed and studied in Refs. 38 and 61 In a relatively
simple potential model. In this case we attempt to evaluate all
corrections in terms of “dressed pion propagators,” i.e., all internal
pion lines in Eq. (52) interact with the medium through the optical
potential. The series for U is much more compactly summed, and one
must be careful to avoid double counting. Beciuse U iS then defined
in terms of itself, the problem becomes o.leof a self-consistent na-
ture. 1 will come back to this idea later in the lecture.

There may, of course, be other ideas which will prove useful for
summing Eq. (52) to obtaia the optical potential. As we learn more
about the physics we will be bet’.erable to distinguish amon[,:he var-
ious possibilities. We shall turn now to the evaluation of second-
order terns in the hole-lins expansion.

The second-order terms contrib’~tingta B in Eq. (50) have the
structure shown in Fig. 18; i.e., there is a ~Srect term, Fig. 18(a),
and an exchange term, Fig. 18(t). If we let i)(~l,g2)denote the value
of the diagram to be averaged over the nuclear wave function, tb-”
these terms contribute to the optical potential as

I have indicated for simplicity only the nucleon coorritnatelabels in
Eqs. (117) ar,d(1!8). In order to treat charge exchange, the tsc.spin
uust also be isolated and treated explicitly.
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Fig. 180 Classification of terms contributing to Eq. (50) Into direct
(a) and exchange (b) pieces.

The expressions for Fig. 18 may be written in terms of the
density matrix,

Thus, Eq. (117) is expressed in terms of the product

(119)

:120)

and Eq. (118) in terms of

n(r1,r2) (121)- P(q,Q) P(9}11) ‘

S mplifications become pogsible when the den61t matrices are expanded
values.20(a)f The local densitya.ound their nuclenr matter

approximation (LDA) #peclfies

(122)

where



.

! - (El + s2)/2 and (123)

r-r
“1 -:2. (124)

The density matrix in Eq. (122) is evaluated in terms of the nuclear
matter Slater function,

SF(X) - 2. (Sh? x
X3

- x Cos x) , (125)

and local Fermi momentum kF(R),

(126)k: = 3T2P(R) .

If we apply the LDA separately to neutrons and protons, we are able to
wri:e an expansion of U in terms of the quantities P(R) =
pn(R) + pp(R) and AP(R) = pn(R) - PP(R).

Let me now make several technical comments about refinements for
the LDA which have been used for the practical evaluation of U in this
theory, The LDA is designed to ●pply exactly for an infinite system,
whereas for pion scattering near resonance th~ most important
densities correspond to the nuclear surface region. We therefore need
to apply a correction. We make the correction ●souming that the

density in the surface behaves as

P(rl)
-(rl-R)/a ,= p(R)e (127)

If we take t’~ediffueene~n ~ to depend on R ●s

a(R) = -P(k)/P’(11) t (128)

then the exponential exprea~ion in Eq. (127) may be expected to repre-
sent p(r) locally around any R,

The expression Eq. (127) may be ~irnplified. For #catterin& in
the resonance region we may think of Lhe pion as traveling along a
trajectory which la a ntraight line of impact parameter b parallrl to
the Z axis. The important interaction~ occur wher~ theme traject.orien
juut graze the nuclear surface; plona muvinu along trajectories of
smaller Impact parameter are Ieadily ab~orbed out of the elastic chnn-
nelo iktauae of this, the moat important Interaction occur where R

la large and ~ is small, 00
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rl “lg+;l= g+&+
~.r
—+ .*..

2
(129)

We may drop the term ~ . r/2 because R and r are nearly perpendicular.
Inserting Eq. (129) Into Eq. (127), w= find-for the direct term in
Fig. 18

2
n(r1,r2) u p2(R)e-r /4~ .

A similar approximation is plausible
take

(130)

for the exchange term, and we

(131)

If one uow evaluates the terms contributing to FIE. 18 using the
diagram rules of Lecture I, employing the spectator expansion of
Eqs. (94) and (96), and using these approximations for the density ma-
trices, one finds that U(2) can be cast into the following form,

where

11[2)m - v(k)v(k’) k2A, -i~t(k’-k)
oek 9 6k/d3R e - - A[i(R)

V2(ko)

(132)

(133)

●nd where AL (R) is given in Eq. (106). We have assumed that the in-
iteraction amp itud~s out of which the diagrams are built set in rela-

tive pion-nucleon p waves; thi~ then leads to the charqcteriatic
p-wave g~

● ~k form (?L is a unit ~~$tor in the direction of k’). If
8 waves are important, then Ui would contain other partial-wave

7&~in~q. (106) areint~gr# ~over the
contribution with the corrempo ~ ng ( of the same form au Eq* (106).
Note that the coefficient ii
relative coordinate ~ = ~1 - ~ ; the evaluation of

i
the Al!! corre-

sponding to a given diagrnm n utra~ghtforward but nontrivial. Fur-
ther dct~ils may be found in Ref. 50.

1 want to consider next the re~ult~ of the evaluation of ~\2)

corresponding to the oequentiul acatterin~ termu. A faw of the
aaquenttal terms were already mentioned in connection with F’IH*6, and
I hav~ collected the relevant terms in Fi~. 19. F’lgure19(A) and (b)

are the direct and exchang~ matrix elementn of the aequttntiulucat.ter-
Inu procO@ue~. F’i~ure19(c) id the once-iternted lowest order optical
potential wl~ichmunl be nubtracLed from tll{$aum of k’iI&.19(a) at’d (b)



\

h’ yh’ ,,

,x ------u (I)

II 1#$/!,
m

.

(c) (d)

Fig. 19. Two-nucleon processes contributing to tke pion-nucleus opti-
cal potential. These terms are second order In the pion-nucleon scat-
tering amplitude and are referred to as sequential scattering
processes.

as indicated in Eq. (93). Figure 19(d) is the crossed process corre-

sponding to Fig. 19(a). It can be easily verified that Fig. 19(a),
(b), and (c) are automatically crossing symmetric if the pion-nucleon
amplitude is crossing symmetric; the sequential processes are there-
fore examples of terms for which it would be wrong to add an explicit
crossed term in Eq, (53).

It is interesting to note that the iteration of the lowest order
optical potential (Fig. 19(c)] needed in ●valuating the spectato].
expansion in Eq. (93) picks up contributions only from Intermediate
analog states. This follows from the relationship

(13i)

One conuequenre is that the contr!kmtion to AC(2) arising from the
aubtractlon of the lowest order optical potential has the form

‘!2)Ap2(!k)A~(2)(_<L$ 1)GoU(1)>) . ..— .
*2 P()

on the other hand, Fig. 19(a) and (b) allow for the sequential scat-
tering to IA(2)> through ZII1ponsible interm?dinta utaten. One does
not Bee explicitly the = over all @tate@ bec8u@e the aeeumption of
fixed nucleona io equivalent to performing thin mum in a closure
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approxllrlation.61 To convert these
into a contribution to the isoteneor

.

amplitudes for elastic scattering
potential, we use Eq. (96),

U(2) . 1
T(2T - 1)

[u(+) +U(-) - @)] ,

and obtain

@
A{(2)(closu1e) _ AP2(R)

(2T -l)—” PO

(136)

(137)

Note that Eqs. (135) and (137) have different dependence on T. One
find

!to A 2,
that the diagram in Fig. 19(c) is the only one t a

?j
contributes

whereas all other terms in the expansion for U 2 contribute
to @ in Eq.73T We shall see that this T dependence of the
isotensor potentibi is important in understanding the double-charge-
exchange data.

The optical potential as given in Eq. (106) will be most useful
if the strongest dependence on N, Z, and A is contained in the explic-
1
t

factors of T, p, and Ap. If this is the case, then the parameters
A 2) can be calculated once and for all at a given energy, and they
wiuld characterize 8cattering throughout the periodic table. We can
see the extent to which thi~ is true for

5?
e sequential scattering by

referring to Fig. 20, which shows the A( for these terms. The cal-
culation was performed as just described, utilizing a short-ranged
corr~:lation function which cuts off sharply at 0.5 fm. The contribu-
tion of the p-meson exchange between the nucleons was not considered.

Fig, 20. Calculated parameters characterizing the second-order
sequential contribution to the optical potential at Tn = 180 MeV as a
function of nuclear maue number A. The solid dots result from evalu-
ating U(R) at R = ~ (Dee di

~2Y
ssio~ of Eqs. (112) and (113). The

hntch markn show the chanue in ~ aa R is varied by tO.5 fm.
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We note that the A[2) shown in Fig. 20 are Independent of N-Z to
a very good app~oximation. The coef

fl?A ald R, especially apparent for ImA2
i;;:e$~~)a weak dependence on

Calculating the
A(2) as a function of energy we find, as expecte~, a very strong de-
pendence on the pion energy.

In our fit to elastic, single-, and double- ; rge-exchauge data
presented in Lecture 11, we took the parameters A{5 to be constant ae
a function of N, Z, and A a d also independent of R. Because of the
reRidual dependen~~)of A~2Y on R and A, the empirical parameters rep-
resent averages <Ai > over the periodic table where the data ●xist.
We would ●xpect some weak, systematic, A-depend

?!5
discrepancte in

the fits to the data arisinR from variations of A
i

[!)●round ~ >.
This discrepancy is not, however, prominent in t e fit to SCX due to
the fact that a large portion of the scattering occurs through terms
llnear in the nuclear densities. For the case of DCX, data ●xist o

?$3for relatively light nuclei where the percentage variation of the Ai
with A as seen in Fig. 20 1s still small.

The ●mpirical determination of A\2) is very interesting because
it bears directly on our understanding of the many-body problein of
strongly interacting particles. We have discussed in detail a theory
of these quantities, and a comparison of theory to experiment will in-
dicate the extent to which our ideas are valid.

In order to compare the values of the coefficients in
Eqs. (108), (109), and (110) to the predictions for the sequential
terms, we must choose an energy at which to evaluate the latter. Due
to the po~slbility of energy shifts, it is not clear, without further
theoretical study, what this energy should be. If we choose the
incident pion energy, 164 MeV, then we find

Ap m 7.25 + 0.97i fm3 (138)

\\2) = 15.4 + 1.401 fm3 (139)

& - -~,o- 4,~~ fm3 ● (140)

In the case of the Isoveccor optical potential, I believe it i~
61i}’,ni

M
,ant that both the th~ory and the calcula

\i!
n give large values

for Al . The piece of the theory which make- ~ l,argoia the Pauli
term, Fig. 20(b); i.e., the effect o! short-ranged correlations 1s
fimall. The theoretical value is 50% lar~er than the axperim~nt~l

oult and differu in phape b) 73°. A decra~aa in the magnitude of A\
?j

and a rotation of phase in the denired direction would occur if one
were to Ume the ❑edium-modified plon-nucleon scattering ●mplitude ~
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discussed at the end of Lecture III in evaluating this term, instead
of the free pion-nucleon scattering amplitude.

In the case of the isoscalar potential A$2) we again find that
the Paull term dominates. Now, however, the theoretical and empirical
values differ greatly In both phase and magnitude. This .lack of
agreement ie not surprising in view of the expectation that the Pauli
terms will be balanced and perhaps dominated by collisional broadening
●ffects, which we have not yet considered (see discussion later in
this section).

The Isotensor potential coefficient A~2) ie of the same
magnitude in the theory and experiment but differs in phaee by l~!2°.
The origin of tbe empirical value 1s something of . mystery ror the
microscopic theory, and we return to a ~o”e detailed di~cuesion of
this term a bit later in the lecture.

We are able to make a somewhat stronger statement abo~~,tour un-
derstanding of the dependence of the isotensor potential on N-Z. It
had been something of a puzzle

t
n the empirical study of the T depend-

●nce of dold$l(5°) for DCX why 8Ca (which has T = 4) has a cross sec-
tion so much smaller than the one predicted by the semiclassical re-
sult in Eq. (113). We can now uncles and this as a manifestation of
the fact tjthat the iteration of U 1 yields a cross section with the
wrong T dependence. Using our knowledge of the T

?!7
endence of the

isotensor potential correapo~ding to the iterated U [Eq. [~;s)land
the closure result [Eq. (137)], we find to lowest order in U

~ (closure) = C(7L& 1)2% [no U(2)] , (141)

where the constant C can be determined from the details of tl~edynami-
cal model. Taking Eq. (113) for the right-hand side in Eq. (141) we
obtain

(142)

We compare in Table I the experimental forward double-charUe-
exchanRe cros~ sectionu at 165 Ma’Jto the theory u~ing the scaling
denuitiee of Equ, (115) and (116), The experimental numb~rs ~re from
Refm. 62 and 63. Note that th

?5
heory IU sub~tantially larger than

the experiment for 48Ca withnut U 2 a~ emphasized in Ref. 63, When
the calculation la repeated uuin~ Eq, (142), then the agreement III
much improved.

Tiledetails of the thetory in Table I will chan~a when more raal-
iatic densities are umed. There ia com~ reu~on to believe that the

value of the crous n~ctlon for 42CA would be particularly aenu!tive to
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641 Our main point 18,these Improvements through core polarization.
however, that it is important to consider nonanalog intermediate
states in double-charge exchange, especially for nuclei with large T.

Table I. T
Tn = 165 MeV.

=

180

%g
42Ca
48Ca
48Ca

dependence of (m+,m-) to
18
obaric

The theory-is normalized to O.

T Exp. (Ub/sr) 9

1 1 i 0.1 1
1 ().3 ~ ().1 0.29
1 0.14 i 0.04 0.06
4 0.29 t 0.13 1.07
4 0.29 * 0.13 0.27

analog states at

Comment

no U(2)
with U(2)

In the future we will see more effort devoted to the evaluation
of the other second-order terms of U, some of which are redrawn in
Fig. 21. Figure 21(a) refers to uiultiple reflections between two
nucleon8, which we shall see leads to lar~e collision broadening.
Figure 21(b) is a term in which the A33 interaets with the nucleus,
and Fig. 21(c) and (d) correspond to the pion interacting with A s

components in the initial or final nuclear ground tatate. 2There may e
other
states

exotic terms; for
6~~r~~lustrated in Fig. 22.

example, excitation ofT=2

y/’”@)-~,’),,
fr“ II ‘1

i-rrb

(c) (d)

Fig, 21. Additional two-nucleon proceenes contributing
pion--nucleuo optical potential. (a) in third order
pion-nucleon ocattaring amplitude and is referred to ●s a
reflection, wheraac (b)-(d) involve various ioobar-medium
Each proceoa ham a corresponding exchan~e and croneed piece.

dibaryon

to the
in the

multiple
effects.



Fig. 22. A speculative term
which would contribute to
double-charge exchange.
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~~g. $3. ~~ve-degree cross section for
- 0(11,11-) Ne as a function of energy
The long/short-dashed curve is the
sequential procesc. The short-dashed
curve is the sequential.plus Fig. 21(c)
and (d). The solid curve is sequential
pluS Fig. 21(b).

The “double delba” terms In Fig. 21(c) and (d) have been of a
great deal of interest latelyb61 in understanding the connection be-
tween analog and nonanalog double-charge exchange. It has been
speculated, in particular, that an interference between these terms

and the sequential scattering terms might be responsible both for
moving the minimum in the lgo(m+,n )- 18Ne differential cross section to
22C (in the manner dis~ussed in Lecture 11) an

if
or the characteristic

de ndence of the excitation function, 7 shown in Fig, 23 for
IB:::!,m-)?l!Ne. We have calculated these terms and in addition, the

!&au~~tS;:;cl~~ of
with the nucleus, Fig. 21(b). Figure 21(b) is large

the A 3
2

is on resonance, ao is the other.
Fig!’re21(b) is, in p.~rtcular, larger than the terns in Fig. 21(c)
and (d), which con;ain at most one resonant A33.

The re~ult~ of our calculation are bas d on the assumption that
the two neutrons fin ~80 are in the (d /2) configuration. We allow

2the A33 to interact with the nucleus t rough both w- ●nd p=eson
●xchange. The contribution of Fig. 21(c) and (d) iu dominated by the
tensor component 01 IiiS interaction, and these terms are therefore
reduced when the P meson is included. “.%eterm in Fig. 21(b) in

determined by a combination of tiletensor and npin-epin interaction in
uuch a way that, for otrong p coupllng [oee Eq* (19)] and short-ranged
form factora [APAA - 1.2 @V/c--ace Eq. (35)], the contribution of



.,
.

this term 1s dominated by the p meson. Its precise value is very
sensitive to f

PAA and ApdA.

The results68] a~f shown in Fig. 23. For purposes of comparison
we show the iterated U( ) (long-short d&shes). It has the right order
of magnitude, but undershoots the data at low energy and overshoots it
above resontmce. When the contribution of Fig. 21(b) is added with
strong p coupling and APAA = 1.2 GeV/c, we get the solid curve. The
agreement with experiment is vkstly improved at lower energies, but
the theory overshoots the cross secticn in the vi?inity of the
resonance by more than a factor of four. We find some tendency for
the minimum of the angular distribution at 164 MeV to move in the
proper dtrection (it comes in to 280). Because of the strong sensi-
tivity to f and AP4A,@$el the results of the calculation of Fig. 23(b)
are very dependent. This is true to a much lesser extent for
the results of Fig. 21(c) a d (d).

?
TheGe terms contrihte through a

higher order tensor in U 2), which we have added to Eq. (133). The
rhort-dashed curve 1P Fig. 23 is the sum of the sequential plus
“t&. 21(c) t.nd!d). lieturned the p-me80n coupling off to enhance the
contribution of Fig. 21(c) and (d), and it is seen that even then the
result is essentially negligible.

Thus we have found a large contribution of Fig. 21(b) and a
small con:rlbution of Fig. 21(c) and (d). Unfortunately, we are
unable to un~.erstandthe data with the combination of the sequenttel
plus dou$le A t~~rms. We have also been unable to find a conventional
term which, when added to those we have evaluated, will give the
experimental r*s{*lts. The ui~interms which remain to be evaluated are
the multiple reflection and true absorption pieces. Of these two
contributioo~ co the isotens6r potential, the true absorption will be
relatively &m&.li because the neutron pairs have T = 1, and true ab-
sorption occurs do~ic~ntly on T .40 pairs.6g~ The multiple reflection
will be much larger, but its phase is similar to that of the
sequential pr~cessetiand will therefore not reproduce ihe structure in
the data, A term which would have tbe correct phase is a (broad)

resonance SUC}, &ti t.h~i shown in Fig. 22 with an energy of several
hundred MeV ubove the A33.

Let me r:dd turn to the finai topic of these lectures, which
comes back to a q:eot~on raised at the beginning of Lecture III,
namely, what to do when higher order terms in U become too large to

evaluate perturbativel.y. A case in point la the ❑ultiple reflection
term in Fig. 21(M), which has been found to be large in heavy
nuclei.’o] The idc~ propo$ed in Refb. 38 and 61 is that the pion
cloud around th~ A~3 should be allowed to interact with neighboring
nucleons in a a~lf-coheis?cnt fashion. This leads to a def~nition of
the self-concistcnt pion-,,”lcle9nscattering amplitude f and the
medium-modified pion propagator G, which are then to be uoed for
evaluating all hipht; order correction. It was shown in Ref. 61 that
the nww expansiou appears to converge taster than the hole-line
expansion in the resonance rngion, and the re~aons for expecting this
improved conver,{encethroughout all ordere was indicated.



The study reported in Refs. 38 and 61 was made in R static
potential model for the case of an infinite medium, but the ideas can
be extended LO more comprehensive theories such as the field

711 Let me describetheoretical model which is being developed here.

briefly the static potential model theory, which was applied to evalu-
ate the isoscalar tem in-the amplitude f.

The equa~ions determining ~ are shown in Fig. 24. In the actual
calculations, f was evaluated by solving an integral equation implied
by the sequence in ~ig. 24(b). Because the pion self-energy is de-
fined in terms of f, the equation is nonlinear. Short-ranged
correlations wer: allowed to act between all successively struck
nucleons. The pion-nucleon form factor was assumed to have the form
given in Eq. (75) with A = 765 MeV/c [see discussion below hq. (75)].
The self-energy in Fig. 24(c) was fit to a Breit-Wigner function. The
te~ms included were: f plus all f:her legitimate direct multiple
reflections of e.dressed pion between two nucleons. By a dressed
pion, I mean that the pion propagator was the sequence in Fig. 24(d).
From this Breit-Wigner parametrization it was possible to determine

‘o and then to compare it to the ~henomenological val~es of
isobar-hole model [see Eq. (75) and Fig. 10]. The results are plotted
as the solid lines in Fig. 25. The agreement is not perfect, but one

7-* x

rP

(o)

Ii;.,+
+

(b)
1

F

b.,+

(d)

+.,,

Fig. 24. Coupled equations -determining the self-conaietent plon-

nucl,eonscattering amplitude f in terms of the free amplitude f.
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sees that the magnitude and sign of the empirical isobar-nucleus iso-
scalar potential is reprf uced by this calculation. If this spreading
interaction is converted to a second-order isoscalar

~$t
i.cal

potential, it contributes a large negative value for Id at
164 MeV, as t corresponds to a broadening of the A3 reso~nce. This

i
2, is the same as thesign for IuA

!

~~irlcal value Zgven inEq. (108).
Consistency etween the empirical A and the theoretical calculation
would thus indicate that the collis on-broadening terms doudnate over
the resonance-narrowing (Pauli) term in Eq. (138).

The main result of this 1 cture, given in Eqs. (133) and (106),
is the parametrization of U(2f, appropriate for resonance-energy
scattering. We found that this form is justified as a ow-density
approximation in the static Chew-Wick field theory twith A 2) nearly
Independent of N-Z, weakly depen~ent on A and R, and strongly
dependent on energy. We were able to draw tentative conclusions about

theory on a partial evaluation of the parameters
~%tributlng tob~r;$. Considerations of enhancing the convergence af
the expansion of U lead to the notion of self-consistency. We showed
that the qualitative behavior of the isoscalar optical potential Is
determined by the self-consistent c!eterminatlonof the pion-nucleon
~cattering amplitude in the medium. We concluded that the large em-
pirical val~iefor the isovector optical potential found In Lecture II
could arise from the Pauli correlations calculated In terms of the
self-consistent pion-nucleon scatter n

t?
amplitude. To implement a

2 following the ideas present-fully self-consititentcalculation of U
ed in Refs. 38 and 61 would require a somewhat generalized definition
of a second-~rder correction to U. One would hope t“lt the resu:.t

r 1.

.* 1 1 AA
T1

100 150 zno 250

Tm (W/)

Fig. 25. Comparison of the theoretical spreading potential of Ref. 61
to the phenomenological result of Ref. 4(a). The legend is the Fame
as Fig. 10.
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would not cliffr drastically in form from Eqs. (133) and (106); e.g.,
‘2) to haze a (weak) dependence on p(R) would be suffi-that allowing Ai

cient.

7’e isotensor potential is the most poorly understood component
of U(2 We found evidence for the necessity of including intermedi-
ate non~nalog states in aequeutial scattering by considering the rela-

from 48Ca com-tive forward cross section of double-charge exchange
~d to that for T = 1 nuclei. In trying to understand the absolute
magnitude of the DCX cross section, we showed that the A3 interacting
with the nucleus would give a 3large enhancement to ouble-charge
exchange but that this would not describe the data for energies
140 MeV.

above
If one adopts the strong p coupling to the A33 and a high

m
?27

PAA form-factor cutoff, what appears to be needed is a term in
u which behaves like a broad resonance with a mass 100-200 MeV
above that of the A33 resonance.

How close have we come to solving the basic problems as put
forth in the introduction to these lectures? It is certainly too
early to claim to have a completely satisfactory solution. However, I
am encouraged by successes we have had in the phenomenological appli-
cation of the ideas and by hirts that the dominant physics of the iso-
scalar and Isovector second-order terms has been identified. We hope
to have a more complete determination of the second-order optical
potential in the future. Because of the large $ rgy shifts found in
the empirical studies ?5, one would like to embed U in a calculation
for which the lowest order potential is obtained from first
principles. Progress in this direction is being made

‘~~~ b~~~d4~~e
.

Some consideration for the extension of the theory of U
static approximation would also be desirable. Once a reasonably well-
justified dynamical model of U is obtained, we will be much closer to
the long-sought goal of being able to study nuclear structure quanti-
tatively with pions.
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